
T3-1 - Fonctions, modules, fichiers Cours

Organiser un programme :

Fonctions, modules, fichiers

1 Qu’est-ce qu’une fonction

Les fonctions informatiques permettent de structurer un programme informatique com-
pliqué en une architecture d’éléments plus simples.

1.1 Analogie avec les fonctions mathématiques

Soit f : R → R

def square(x):

y=x*x

return y

1.2 Fonctions de service

Certains téléphones sont équipés de la fonc-
tion réveil.
Elle déclenche une sonnerie si l’heure de
l’horloge correspond à l’heure définie de
réveil.

def reveil(heure_reveil):

if heure_reveil==horloge():

sonner()

1.3 Usage d’une fonction

Le langage python inclut 69 fonctions de bases, en plus des opérateurs de calculs. Ces
fonctions utilisent un certains nombres d’arguments et renvoient certains résultats. Pour
connâıtre les arguments et le resultat, il suffit d’utiliser la fonction help(). Par exemple :

>>> help(abs)

Help on built-in function abs in module builtins:

abs(x, /)

Return the absolute value of the argument.

>>> abs(-3.2)

3.2

Informatique-PCSI 1 / 6 Lyc. J. Perrin (13)

T3-1 - Fonctions, modules, fichiers Cours

Quand on veut utiliser une fonction, pour l’appeler, on a besoin des informations sui-
vantes :

• son nom ;
• ses paramètres et leur type ;
• le type de la valeur de retour (s’il y en a une).

Ces informations sont communément appelées la spécification de la fonction. Elles forment
la signature de la fonction, petit texte descriptif accessible en utilisant l’aide (help).

2 Ecrire une fonction

Un programmeur peut aussi créer ses propres fonctions. Il faut prendre le soin de bien les
spécifier pour qu’elles soient utilisables par d’autres personnes. L’écriture d’une fonction re-
prend les principes d’écriture d’un programme auxquels s’ajoutent des éléments complémentaires.

2.1 Contexte d’usage : interaction d’une fonction

Informatique-PCSI 2 / 6 Lyc. J. Perrin (13)

T3-1 - Fonctions, modules, fichiers Cours

2.2 Elements de rédaction d’une fonction

2.2.1 Les éléments du code

Une fonction, sous python, est introduite par le mot clé def. Elle possède :
• un nom (mêmes règles que pour les noms de variables) ;
• une spécification, petit texte placé entre ””” décrivant la spécification ;
• des paramètres ou arguments, placés entre parenthèses.
• un corps : séquence d’instructions exécutée lors de l’appel de la fonction ;
• un retour de résultats (optionnel) introduit par le mot-clé return.

def nom_de_la_fonction(arguments)

"""Specification ..."""

corps_de_la_fonction

return valeurs

Remarques :
• Les fonctions doivent être définies en début de programme, avant d’être utilisées ;
• Le corps de la fonction est indenté d’une tabulation ou 4 espaces ;
• La fin de la fonction est indiqué par l’indentation ou lorsque le mot-clé return est
atteint.

2.2.2 Specification : documentation d’une fonction

Outre le fait qu’il convient de donner un nom explicite à une fonction, il peut vous être
demandé de la documenter, c’est-à-dire de spécifier les prérequis sur les arguements formels,
leur relation avec le résultat renvoyé, les effets éventuels attendus de la fonction.

Ces informations doivent être placée au début du corps de la fonction, sous forme d’une
chaine de caractère entourée de trois guillemets. Elles sont alors accessible par la commande :
help(nom de la fonction).

def Hypothenuse(x,y):

"""Calcule l'hypothenuse d'un triangle rectangle de petits cotes x et y (nombres)"""

return (x**2+y**2)**0.5

3 Usages des variables avec des fonctions

3.1 Exemple introductif

1 def somme_des_n_entiers_puissance_i(n,i):

2 somme=0

3 for indice in range(n):

4 somme = somme + indice**i

5 return somme

6

7 a=int(input("Combien d'entiers ? "))

8 p=int(input("A quelle puissance ? "))

9 S=somme_des_n_entiers_puissance_i(a,p)

10 print("la sommes des n premieres entiers àla puissance i est : ",S)

Informatique-PCSI 3 / 6 Lyc. J. Perrin (13)

T3-1 - Fonctions, modules, fichiers Cours

3.2 Portée des variables

Dès lors qu’on utilise des fonctions, il devient nécessaire de distinguer deux sortes de
variables :

• les variables globales ont une portée sur l’ensemble du programme : elles sont uti-
lisables (appel et affectation) depuis le programme et les fonctions ;

• les variables locales qui ont un portée limitée au corps de la fonction : elles s’effacent
de la mémoire à la fin de l’exécution de la fonction.

Conseil :
• Utiliser des noms de variables différents pour les variables locales et globales.

3.3 Transmission des paramètres d’une fonction

Lors de la définition d’une fonction, les variables qui figurent comme arguments sont
appelées paramètres formels. Car, ils n’ont pas encore d’existance réelle dans la mémoire.
Les paramètres transmis à la fonction lors de son appel sont appelés paramètres effectifs.
Lors de l’appel d’une fonction :

1. les paramètres formels sont déclarés en tant que variables locales ;

2. ils prennent les valeurs de constantes ou de celles des variables globales précisé par les
paramètres effectifs.

3.4 Application

On considère le programme suivant :

1 def carre(x):

2 y = x**2

3 return y

4 # début du programme

5 a=3

6 print(carre(a))

7 print(a)

Décrire l’évolution de l’état du programme.

3.5 Fonction de plusieurs arguments, à plusieurs résultats

Une fonction peut nécessiter plusieurs arguments et peut retourner plusieurs valeurs :

1 def division_euclidienne(a,b):

2 return a//b,a%b

3 quotient,reste=division_euclidienne(13,3)

4 print(quotient)

5 print(reste)

Informatique-PCSI 4 / 6 Lyc. J. Perrin (13)

T3-1 - Fonctions, modules, fichiers Cours

4 Les modules

4.1 Fonctions prédéfinies

Python s’appuie sur 68 fonctions de bases. Pour résoudre des problèmes complexes, il est
possible de s’appuyer sur d’autres fonctions contenues dans des modules qu’il faut importer
au cas par cas. Parmi les modules les plus utiles dans ce cours, citons :

• math : contient les fonctions usuelles en analyse
• random : sert à générer des nombres pseudo-aléatoires
• numpy et scipy : fournit des outils variés pour le calcul scientifique
• matplotlib : permet le tracé de graphes
Il y a différentes possibilités pour charger un module – ≪ Charger ≫ prend ici le sens

d’amener dans la mémoire active associée au programme ou à la console en cours d’utilisation.
Pour bien faire, il placer le chargement en début de programme.

4.1.1 Première méthode : le chargement direct

1 from module import *

Toutes les fonctions/méthodes du module sont chargées dans la mémoire active. Il est
possible de les appeler directement.

On peut ne charger que certaines fonctions du module avec l’instruction :

1 from module import fonctions_a_importer

Pour plus de commodité et éviter les redondances de nom, il est possible de renommer
les fonctions au moment de l’appel avec le mot clé as :

1 from module import fonction_a_importer as nouveau_nom_fonction

4.1.2 Deuxième méthode : le chargement indirect

1 import module

Toutes les fonctions/méthodes du module sont chargées dans la mémoire active, mais
regroupé dans un ≪ paquet ≫ qui porte le nom du module. Une fois le module chargé, pour
appeler une fonction en particulier du module, il faut alors utiliser la syntaxe :

1 module.fonction_en_particulier

Cette méthode permet d’assurer l’absence de redondance des noms utilisés.
4.1.3 Application : interpréter les chargements suivants :

from math import *

import numpy as np

import scipy as sp

import scipy.integrate as integr

Informatique-PCSI 5 / 6 Lyc. J. Perrin (13)

T3-1 - Fonctions, modules, fichiers Cours

5 Données externes : les fichiers

Un fichier est une donnée conservée dans une mémoire de masse (disque dur). Nous ne
manipulerons que les fichiers les plus simples : les fichiers texte, reconnaissable grâce au
suffixe ≪ .txt ≫.

5.1 Présentation

Un fichier externe est un fichier sauvegardé sur un support de masse. Il contient des
données préenregistrées selon une convention (format). Sous Python, il faut les manipuler
en trois temps :

1. Ouvrir le fichier : on précise le nom du fichier avec son chemin d’accès et le mode
d’accès (lecture seule ou lecture & écriture) ;

2. Lecture ou écritures des données dans ce fichier ;

3. Fermeture le fichier une fois qu’on a terminé de travailler avec.

5.2 Ouverture d’un fichier

Ouvrir un fichier correspond à :
• définir en mémoire une variable correspondant à un lien vers le fichier ;
• signifier au système d’exploitation que le fichier est en cours d’utilisation.

mon_fichier=open(Chemin,par)

où :
• Chemin : nom du fichier précédé de son chemin d’accès : U:/Python/Projet1/fichier.txt
• par : mode d’ouverture (r pour lecture seule, w pour lecture et écriture)

5.3 Lecture et écriture du contenu textuel

La lecture se fait par méthodes, qui dépendent évidemment du contenu. Dans le cas d’un
fichier texte, nous n’en retiendrons que trois :

1. mon_fichier.read() : renvoie la châıne de caractères contenue dans le fichier

2. mon_fichier.readline() : renvoie la première ligne contenue dans le fichier. Un
nouvel appel de cette méthode renvoie la seconde ligne, etc.

3. mon_fichier.readlines() : renvoie une liste de châınes de caractères où chaque
élément est une ligne du contenu du fichier.

L’écriture se fait par la méthode suivante, qui remplace le contenu actuel du fichier par
la chaine s :

mon_fichier.write(s)

5.4 Fermeture d’un fichier

Enfin, pour fermer le fichier, la méthode est la suivante :

mon_fichier.close()

Informatique-PCSI 6 / 6 Lyc. J. Perrin (13)

	Qu'est-ce qu'une fonction
	Analogie avec les fonctions mathématiques
	Fonctions de service
	Usage d'une fonction

	Ecrire une fonction
	Contexte d'usage : interaction d'une fonction
	Elements de rédaction d'une fonction
	Les éléments du code
	Specification : documentation d'une fonction

	Usages des variables avec des fonctions
	Exemple introductif
	Portée des variables
	Transmission des paramètres d'une fonction
	Application
	Fonction de plusieurs arguments, à plusieurs résultats

	Les modules
	Fonctions prédéfinies
	Première méthode : le chargement direct
	Deuxième méthode : le chargement indirect
	Application : interpréter les chargements suivants :

	Données externes : les fichiers
	Présentation
	Ouverture d'un fichier
	Lecture et écriture du contenu textuel
	Fermeture d'un fichier

