
T1-3 - Les collections Cours

Les collections
Le terme ≪ collections ≫ est un terme générique englobant tout objet contenant plusieurs

éléments ou objets de type plus simple. Elles sont aussi appelés ≪ itérables ≫. Python propose
de nombreux types de collection différents, chacun adapté à un usage.

1 Listes

D
éfi

n
it
io
n

Une liste est une collection de valeurs qui sont modifiables. Elle est notée entre
crochets. Deux valeurs sont séparées par une virgules.

Par exemple : [2,2.,1+i,"deux"] est une liste de 4 éléments en Python. Comme cet
exemple le montre, les listes ne sont pas forcément de types homogènes.

Il existe aussi la liste vide : []

1.1 Manipulation de listes

1.1.1 Création explicite

La façon la plus simple de définir une liste est d’utiliser une affectation explicitement.
Par exemple :

L1=[2,4,8,16,32,64,128]

1.1.2 Opérateurs sur les listes

Quatre opérateurs sont à retenir pour la manipulation de liste : deux opérateurs de
concaténation et deux opérateurs de test d’appartenance.

La concatenation + consiste en l’assemblage d’une liste par morceaux. Dans la même
logique, l’operation * assemble plusieurs fois le même morceau.

Deux tests d’appartenance peuvent être utilisés :
• x in liste : renvoie True si l’élément x est présent dans liste, False sinon
• x not in liste : renvoie True si l’élément x n’est pas présent dans liste, False
sinon

>>> print([1,2]+[3,4])

[1,2,3,4]

>>> print(3*[1,2])

[1,2,1,2,1,2]

>>> 2 in [1,2]

True

>>> 2 not in [1,2]

False

1.1.3 Comparaison des listes & arrays

list array

type natif importé du module numpy
contenu hétérogène homogène

opérations
≪ + ≫ concaténation
≪ * ≫ répétition

≪ + ≫ addition terme à terme
≪ * ≫ multiplication terme à terme

Informatique-PCSI 1 / 6 Lyc. J. Perrin (13)

T1-3 - Les collections Cours

1.1.4 Fonctions

1. len(liste) : renvoie la longueur, c’est à dire le nombre d’éléments, d’une liste

2. min(liste) : renvoie le plus petit élément d’une liste (dans la mesure où ils sont
comparables)

3. max(liste) : renvoie le plus grand élément d’une liste (dans la mesure où ils sont
comparables)

4. sum(liste) : renvoie la somme de tous les éléments d’une liste (dans la mesure où ils
sont additionnables)

5. sorted(liste) : renvoie une nouvelle liste des éléments de liste triés par ordre
croissant

6. del(liste[i]) : supprime le ieme élément de la liste

7. del(liste) : supprime liste de la mémoire

1.2 Accès aux éléments d’une liste

1.2.1 Principe

Le traitement de données nécessite souvent le travail sur certains éléments d’un liste
uniquement. Il est donc important de mâıtriser comment accéder à un élément ou groupe
d’éléments d’une liste. Les éléments d’une liste de longueur n sont numérotés de 0 à n− 1.
On appelle indice ce numéro (index en anglais). Il est aussi possible d’utiliser un indice

négatif qui correspond à une numérotation des éléments en partant de la fin (−n pour le
premier à −1 pour le dernier).

Soit L une liste quelconque.

1. L[p] renvoie l’élément d’indice p de L

2. L[p:n] renvoie une nouvelle liste constituée des éléments de L d’indice p inclus à n
exclu

3. L[p:n:pas] renvoie une nouvelle liste constituée des éléments de L d’indice p inclus
à n exclu, tous les pas

4. L[:] renvoie une nouvelle liste constituée de tous les éléments de L

5. L[p:] renvoie une nouvelle liste constituée de tous les éléments de L à partir de
l’élément d’indice p inclus jusqu’à la fin

6. L[:n] renvoie une nouvelle liste constituée de tous les éléments de L depuis le premier
jusqu’à l’élément d’indice n exclu

7. L[::pas] renvoie une nouvelle liste constituée des éléments de L, tous les pas

1.2.2 Exemples

Soit la liste :

L=["A","B","C","D","E","F","G","H","I","J","K"]

Informatique-PCSI 2 / 6 Lyc. J. Perrin (13)

T1-3 - Les collections Cours

1.2.3 Affectation d’un élément de liste

L’affectation d’une liste est possible. L’affectation d’un élément ou groupe d’éléments de
liste est possible aussi. La syntaxe est la suivante :

L1[3]=14

Attention, cette instruction pourrait être remplacée par l’instruction complète :

L1=L1[:3]+[14]+L1[4:]

Evidemment, si L1 n’a pas au moins 4 éléments, cette instruction renvoie une erreur.

1.3 Parcours d’une liste

A partir des syntaxes d’accès à un élément de liste, il est possible de parcourir un après
l’autre les élément d’une liste. Deux approches sont possibles :

L=[2,4,8,16,32,64,128]

for i in range(len(L)):

print(L[i])

L=[2,4,8,16,32,64,128]

for x in L:

print(x)

1.3.1 Parcours de liste et definition par compréhension

Sur cette base, il est possible de construire une liste ≪ par compréhension ≫ . C’est une
méthode qui consiste à définir une liste à l’aide d’une expression dépendante d’une variable
qui parcourt un itérable.

La syntaxe générale est à adapter suivant le contexte :

[expression(i) for i in range(n)]

ou

[expression(x) for x in L]

Exemple : quelle est la liste cosntruite par : L3=[i%3 for i in range(9)]

Application 1

Qu’est ce qui est stocké dans les listes L007 et L008 suivantes :

L007=[i**2 for i in range(6)]

L008=[2*i+1 for i in L007]

Ecrire le programme permettant de créer ces listes en utilisant deux boucles for explicites.

Informatique-PCSI 3 / 6 Lyc. J. Perrin (13)

T1-3 - Les collections Cours

1.4 Algorithmes sur les listes

Application 2 : Recherche d’un élément dans une liste

Une première problématique consiste à savoir si un élément a est présent dans une liste
L déjà en mémoire. Il n’est pas nécessaire de parcourir tous les éléments de la liste, car on
souhaite interrompre le parcours dès qu’un élément est trouvé. Deux solutions sont possibles,
en utilisant une boucle for ou une boucle while.

1 # L et a sont déjà en mémoire

2 i=0

3 while i<len(L)and L[i]!=a :

4 i=i+1

5 print(i<len(L)) # Ceci est un booléen

Application 3 : Recherche d’un maximum

Deuxième problématique : trouver le maximum d’une liste de nombres déjà en mémoire.

1 # liste est déjà en mémoire

2 maxi=liste[0]

3 for i in range(len(liste)):

4 if liste[i]>maxi:

5 maxi=liste[i]

6 print(maxi)

2 Autres collections

2.1 les ≪ n−uplets ≫ ou ≪ tuplets ≫

D
éfi

n
it
io
n Les ≪ n−uplets ≫ ou ≪ tuplets ≫ sont des similaires à des listes, mais non

modifiables. Ils sont définis entre parenthèses ; le séparateur est la virgule :
(1.,1,’1’,True).

Informatique-PCSI 4 / 6 Lyc. J. Perrin (13)

T1-3 - Les collections Cours

2.2 Châıne de caractères

Une châıne de caractères est aussi similaire à une liste de caractères, et n’est pas modi-
fiable.

Elles sont définies entre apostrophe ’blablabla’ ou entre guillements "blablabla" sans
séparateur entre deux caractères.

Enfin, l’accès par indexation aux éléments d’une châıne de caractères respectent la même
syntaxe que celle pour les listes.

Petite différence avec les listes.

>>> L=[2]

>>> L[0]==L

False

>>> S='b'

>>> S[0]==S

True

L’affectation d’un élément de châıne n’est pas autorisée.

2.2.1 Caractères spéciaux

Parmi les caractères spéciaux de la table ASCII, nous n’en retiendrons que 2 :
\n retour à la ligne line feed

\t tabulation tabulation

\\ anti-slash \
On remarque que les caractères spéciaux sont introduits par \ ; \\ devient lui-même un
caractère spécial.

Application 4 : compter les occurences d’une lettre

Proposer un programme qui compte le nombre de fois où la lettre ’s’ apparait dans une
chaine de caractère S déjà en mémoire.

Informatique-PCSI 5 / 6 Lyc. J. Perrin (13)

T1-3 - Les collections Cours

2.3 Dictionnaires

Un dictionnaire est une collection aux propriétés atypiques dont nous ferons un usage
dans certains cas très particuliers. A la différence d’une liste où les éléments sont accessibles
via leur index, les éléments d’un dictionnaire sont accessibles via leur ≪ clé ≫.

0 2001
1 ’odyssée’
2 ’espace’
3 ’Thomas’
4 ’Pesquet’

Jean 0612345678
Josephine 0623456789

Jamel 0634567890
Jacques 0645678901
Jimmy 0656789012

Les clés doivent être constantes (types élémentaires, str, tuple, mais pas une liste). Les
valeurs peuvent être tout type d’objet.
Création d’un dictionnaire

d = {}

d = {’a’ : 12, ’droit’ : ’au but’, 42 : [1,2,3]}

Lire une valeur sur la base de sa clé
d[’a’]

Ajout ou mise à jour d’un élément :
d[True]=888

Supprimer un élément
del(d[42])

Application 5

Deux listes sont en mémoires :
• une liste de noms, notée Nom ;
• une liste de numéros de téléphone, notée Tel.
Ecrire un programme qui crée un dictionnaire dont les clés sont les différents noms, et

dont les valeurs sont les numéros de téléphone.

3 A retenir

Parcours d’une liste
L=[a0,...,an] :

for i in range(len(L)):

print(L[i])

for x in L:

print(x)

Construction d’une liste
[a0,...,an]

où ak=f(k)

L=[]

for k in range(0,n+1):

L.append(f(k))

L=[f(k) for k in range(0,n+1)]

Informatique-PCSI 6 / 6 Lyc. J. Perrin (13)

	Listes
	Manipulation de listes
	Création explicite
	Opérateurs sur les listes
	Comparaison des listes & arrays
	Fonctions

	Accès aux éléments d'une liste
	Principe
	Exemples
	Affectation d'un élément de liste

	Parcours d'une liste
	Parcours de liste et definition par compréhension

	Algorithmes sur les listes

	Autres collections
	les « n-uplets » ou « tuplets »
	Chaîne de caractères
	Caractères spéciaux

	Dictionnaires

	A retenir

